The Cauchy theorem for functions on closed sets
نویسندگان
چکیده
منابع مشابه
developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملA Continuity Theorem for Cores of Random Closed Sets
If a sequence of random closed sets Xn in a separable complete metric space converges in distribution in the Wijsman topology to X, then the corresponding sequence of cores (sets of probability measures dominated by the capacity functional of Xn) converges to the core of the capacity of X. Core convergence is achieved not only in the Wijsman topology, but even in the stronger Vietoris topology....
متن کاملOn the T ( 1 ) - Theorem for the Cauchy IntegralJoan
The main goal of this paper is to present an alternative, real variable proof of the T(1)-Theorem for the Cauchy Integral. We then prove that the estimate from below of analytic capacity in terms of total Menger curvature is a direct consequence of the T(1)-Theorem. An example shows that the L 1-BMO estimate for the Cauchy Integral does not follow from L 2 boundedness when the underlying measur...
متن کاملK -Trivial Closed Sets and Continuous Functions
We investigate the notion of K-triviality for closed sets and continuous functions. Every K-trivial closed set contains a K-trivial real. There exists a K-trivial Π 1 class with no computable elements. For any K-trivial degree d, there is a K-trivial continuous function of degree d.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1942
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1942-07821-9